
Time is Money! Use WebSphere MQ
Shared Queues to Reduce Outages

Lyn Elkins

elkinsc@us.ibm.com

Abstract

• Not being able to access your messages can cost your
business money. Come and hear how WebSphere MQ for
z/OS exploits the unique features available to z/OS -
sysplex and coupling facility - to provide you with the
highest level of availability for your messages.

Agenda

• What shared queues are
– Shared queues

– Queue-sharing groups

– Coupling Facility (CF) structures

– Persistence and transaction integrity

• Configuring channels with shared queues
– Inbound channel configurations

– Outbound channel configurations

• Exploiting shared queues
– Availability benefits of queue sharing

– Scalability

Shared Queues?

• Function:
– Multiple Queue Managers can access the same shared queue messages

– Multiple Queue Managers can access the same shared queue objects

• Benefits
– Availability for new messages

– Availability for old messages

– Pull workload balancing

– Scalable capacity

– Low cost messaging within a Sysplex

Mover
(CHIN)

Mover
(CHIN)

Target
queue

Xmit
queue

Application

Queue manager

Application

Queue manager

Mover

N

O

T

E

S

Mover

• Chart shows an application put to a remote target queue -- that is, the target
queue is local to another queue manager. This put uses the mover as follows:

– Application puts to remote target queue

– Queue manager puts message on local transmit queue

– Local mover gets message and sends to remote mover

– Remote mover puts message to target queue

– Remote application can now get the message.

• The remote application can put a message to the reply-to queue using the same
method.

• Note that only applications connected to the target queue manager can get the
message.

Shared
QueueCoupling Facility (CF)

Application Application

QMgr QMgr

Shared Queues

• Same Sysplex

• Physical message size
< 63KB (V5.3.1)
< 100MB (V6)

N

O

T

E

S

Shared Queues

• Chart shows an application put to a shared target queue -- that is, the target
queue is local to more than one queue manager. This put does not use the
mover:

– Application puts to shared target queue

– Remote application can now get the message.

• The remote application can put a message to the reply-to queue using the same
method.

• Note that applications connected to any queue manager with access to the
shared queue can get the message. To access the same shared queues, queue
managers must be:

– In the same z/OS Sysplex

– In the same queue-sharing group (QSG) -- we will explain QSGs later.

• There are restrictions on shared queues, for example:
– Maximum message length is 63KB if on MQ version less than V6

– CF capacity is limited (compared to DASD).

IGQ Agent

Intra-group
queue

Queue Manager

Application Application

Target
Queue

Queue Manager

SYSTEM.QSG.TRANSMIT.QUEUE

Intra-Group Queue

N

O

T

E

S

Intra-Group Queue

• Chart shows an application put to a remote target queue -- but the target queue is
local to another queue manager in the same queue-sharing group. This put uses
the intra-group queuing (IGQ):

– Application puts to remote target queue

– Queue manager puts message on shared IGQ queue

– Remote IGQ agent gets message from IGQ queue

– Remote IGQ agent puts message to target queue

– Remote application can now get the message

• The IGQ method is similar to the mover method but more efficient -- that is, it
uses much less processor power.

• There is one IGQ queue for each queue-sharing group. It has the reserved name
SYSTEM.QSG.TRANSMIT.QUEUE.

• The IGQ queue (and the IGQ method) has the same restrictions as any shared
queue.

• If IGQ cannot be used (large message, no IGQ queue defined, or whatever) then
the put will be handled by the mover (assuming there is a suitable channel).

DB2 Data Sharing Group

WebSphere MQ Queue Sharing Group

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Shared
Queues

Shared
Objects

Data for
msg

> 63KB

Queue Sharing Groups (QSGs)

N

O

T

E

S

Queue-Sharing Groups (QSGs)

• Chart shows how queue managers are organized into queue-sharing groups
(QSGs) and the relationship to DB2 data-sharing groups.

• A queue-sharing group can contain one or more queue managers:
– Each queue manager has its own private (not shared) queues and object definitions.

– All queue managers in a QSG share the same set of shared queues and shared object definitions

– A queue manager cannot belong to more than one QSG.

• Shared object definitions for a QSG are maintained for WebSphere MQ by DB2.
Shared access to these definitions is by DB2 data sharing:

– You must have DB2

– You can have more than one data-sharing group, but all members of one QSG must be members of
the same data-sharing group

– Shared object definitions are cached in the queue managers.

– A DB2 outage does not bring down the QSG (but you cannot add or change shared objects if DB2 is
down).

• You do not have to define any queue-sharing groups if you do not run a Sysplex
(or if you just don't want to).

• If using shared messages > 63KB then a small portion for the message is stored
in the CF, and the rest is stored in DB2.

Use the CSQ5PQSG utility to create a QSG:

1 Add the QSG into the DB2 tables:
//stepname EXEC PGM=CSQ5PQSG,

// PARM='ADD QSG,qsg-name,dsg-name,DB2-ssid'

2 Add the queue managers into the DB2 tables as members of the
QSG:
//stepname EXEC PGM=CSQ5PQSG,

// PARM='ADD QMGR,qmgr-name,qsg-name,dsg-name,DB2-ssid'

Name of the DB2 data-sharing groupdsg-name
DB2 subsystem IDDB2-ssid

Name of the queue managerqmgr-name
Name for the queue-sharing groupqsg-name

Creating a queue-sharing group

N

O

T

E

S

Creating a queue-sharing group

• Chart shows JCL fragments for defining a QSG and adding a queue manager into
a QSG (for more complete information, see System Administration Guide).

• You can also use CSQ5PQSG to remove a queue manager from a QSG. To do
this, you must ensure that the queue manager does not have any recovery to do -
- either:

– The queue manager was stopped normally, or:

– The queue manager has never been started.

• You can also use CSQ5PQSG to delete a QSG which has no queue managers in
it -- that is:

– You removed all the queue managers, or:

– You never added any queue managers in the first place.

• To start a queue manager as a member of a QSG, you provide the QSG
information in CSQZPARM.

• We advise you do not update the WebSphere MQ DB2 tables directly -- use the
utilities we provide.

Administration
structure

Application
structures

Queue Queue Queue

(Information for unit-of-work recovery and so on)

Coupling facility

Administration
structure

Application
structures

Queue Queue Queue

(Information for unit-of-work recovery and so on)

Structures
for QSG 1

Structures
for QSG 2

CF Structures for shared-queues

N

O

T

E

S

CF Structures for shared-queues

• Chart shows organization of WebSphere MQ data in coupling facility (CF)
structures (actually list structures).

• For clarity the chart shows:
– All structures in one CF -- actually they can be spread arbitrarily over many CFs

– Only WebSphere MQ structures -- actually other subsystems and applications can have structures in
the same CF as Websphere MQ.

• Each queue-sharing group needs:
– One administration structure -- this is used for information that WebSphere MQ itself needs, for

example to manage unit-of-work recovery

– One or more (up to a maximum of 63) application structures -- these are used to hold the shared
queues.

• Each application structure can hold up to 512 shared queues.

Creating CF structures and shared queues

• Define a structure to z/OS (not to WebSphere MQ) by
updating the CFRM policy (see System Setup Guide):
– Structure is known to WebSphere MQ by its 12-character str-name

– Structure is known to z/OS by the 16-character name formed by:
• qsg-name || str-name (Application structures)

• qsg-name || CSQ_ADMIN (Administration structure)

• Define a shared queue using the DEFINE QLOCAL
command on any queue manager in the QSG:
– DEFINE QLOCAL(queue-name) QSGDISP(SHARED) CFSTRUCT(str-name)

• z/OS creates the structure when required (first use)

• WebSphere MQ creates the queue when required (first use)

N

O

T

E

S

Creating CF structures and shared queues

• Chart shows the processes for creating CF list structures for use by WebSphere
MQ QSGs and for creating shared queues in these structures.

• The z/OS CFRM policy for the Sysplex specifies how z/OS should allocate
resources for each structure:

– What type of CF (for example, CF must have battery back-up)

– How big to make the structure.

• z/OS does not actually allocate any resource for the structure until first use -- in
our case, the first time a queue manager connects to the structure:

– At startup for the administration structure

– At first queue open for application structures.

• As with private queues, defining the queue to WebSphere MQ does not create the
queue. The queue is created when it is first used.

• It is best to allocate queues so that (as far as possible) all the queues accessed
by any one unit-of-work are in the same structure.

Queue
manager

Private
queues

Queue
manager

Private
queues

Queue
manager

Private
queues

Shared
queues

Coupling facility failure

Messages on
shared queues
OK (kept)

Nonpersistent
messages on
shared queues
lost (deleted)

Queue
manager

Private
queues

Queue
manager

Private
queues

Queue
manager

Private
queues

Shared
queues

Nonpersistent
messages on
private queues
OK (kept)

Messages on
shared queues
OK (kept)

Nonpersistent
messages on
private queues
lost (deleted)

Queue manager failure

Persistent messages
on
shared queues
restored from log

Failure and persistence

N

O

T

E

S

Failure and persistence

• Chart shows implications of failures in a queue-sharing group.

• Left side of chart shows queue manager failure. If one or more queue managers
in a queue-sharing group fail, or are stopped normally:

– Non-persistent messages on queues private to the failing queue manager or managers are lost -- in
fact they are deleted when a queue manager restarts

– Messages on shared queues are not lost, they are kept -- even if all queue managers in the queue-
sharing group fail.

• Right side of chart shows coupling facility structure failure (for simplicity the chart
shows an entire CF failing). If one or more CF structures fail:

– Messages on queues in other CF structures are not lost

– Non-persistent messages on queues in failing CF structures are lost

– Persistent messages on queues in failing CF structures must be restored from backup and log
information on the logs

– Restoring queue manager accesses logs of all queue managers in the QSG.

• If the administration structure fails, all the queue managers in the QSG fail.

Admin Structure Recovery

• Prior to V7.0.1 each queue manager would rebuild its own
admin structure entries
– Particularly an issue in a disaster recovery (DR) situation

• Need to start all queue managers to rebuild admin structure

• Once recovered, application structures could be recovered

• At V7.0.1 active queue managers notice if other queue
managers don’t have entries and initiate a rebuild on their
behalf

V7.0.1

N

O

T

E

S

Admin Structure Recovery

• If the Admin Structure was lost for some reason (DR situation, loss of power to
the CF etc), then prior to V7.0.1 each queue manager had to rebuild its own
Admin Structure entries. As the admin structure needs to be complete for
application structure recovery to take place, it was necessary in a DR situation to
start up all the queue managers in a QSG before application structure recovery
could be performed.

• In V7.0.1 an enhancement has been made to admin structure recovery so that a
single queue manager is able to recover the admin structure entries for all the
other queue managers in the QSG. If a V7.0.1 (or higher) queue manager notices
that the admin structure entries are missing for another queue manager then it will
attempt to recover them on behalf of the other queue manager. It can only do this
if the other queue manager is not running at the time. In a DR situation this
means that it is only necessary to start a single queue manager at V7.0.1 (or
higher) before being able to recover the application structures.

• A V7.0.1 queue manager can recover the entries on behalf of any version of
queue manager - you don’t need to have all queue managers in the QSG running
at V7.0.1 before this functionality will take place.

V7.0.1

Safeguarding against CF failure

• Administration structure updates are logged so that this
structure can be restored.

• Coupling Facilities are very rugged (zSeries processor
technology).

• CF can have its own separate power supply.

• CF can have nonvolatile memory (battery power backup).

• Lost application structures can be restored from backups
and logs
– Can use BACKUP CFSTRUCT(*) at V7.0.1

N

O

T

E

S

Safeguarding against CF failure

• Losing a Coupling Facility has a severe impact on a queue sharing group. In this
respect a CF is a critical resource, similar to the log for private queues and private
objects.

• Chart summarizes safeguards against CF failures.

• CFs are inherently very rugged -- especially with separate power supplies and
battery backup.

• WebSphere MQ does not provide its own CF structure duplexing because this
facility will be provided by System-Managed Structure Duplexing as a part of
z/OS.

• Transaction state information recorded on the administration structure is logged
so that a failed administration structure can be restored.

• Application structures can be backed up and persistent messages written to
application structures are logged so that persistent messages in a failed
application structure can be restored.

Queue manager writes
the UOWD to the
administration structure

Message Message Message Message
Original state of
shared queue

Message Message Message Message
Transaction complete
-- UOWD deleted

Message Message Message
Message Queue manager

commits the
transaction

Message Message Message Transaction in flight
Message

Message

UOWD

GET

PUT

CommitUOWD on the administration
structure -- allows another queue manager to

complete the transaction

Message

Transaction integrity

N

O

T

E

S

Transaction integrity

• Chart shows how WebSphere MQ maintains transaction integrity for shared
queues.

• For clarity the chart shows a transaction acting on one shared queue.
WebSphere MQ also maintains the integrity of transactions that act on multiple
shared queues or that act on both shared and private queues.

• Chart shows the following states for a shared queue on an application structure
(in a CF):

1.Original state -- transaction has not started:
•Queue has four messages on it (all committed).

2.Transaction in flight:
•Transaction has done one get -- message is marked in-flight-get
•Transaction has done one put -- message is marked in-flight-put
•Messages marked in-flight are "invisible" to other transactions
•If queue manager fails, any other queue manager can back-out.

3.Transaction in commit:
•Queue manager has written unit of work descriptor (UOWD)
•If queue manager fails, any other queue manager can complete.

4.Transaction complete:
•In-flight-put message unmarked -- becomes "visible"
•Queue manager deletes the UOWD.

Agenda

• What shared queues are
– Shared queues

– Queue-sharing groups

– Coupling Facility (CF) structures

– Persistence and transaction integrity

• Configuring channels with shared queues
– Inbound channel configurations

– Outbound channel configurations

• Exploiting shared queues
– Availability benefits of queue sharing

– Scalability

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic
port/LU

Shared
queues

Sync Q

Sync Q Sync Q

Inbound connection to
local port/LU of specific
queue manager's mover

Target Q

Target Q

Inbound channel configuration 1

N

O

T

E

S

Inbound channel configuration 1

• This chart is the first of three which show different ways to configure inbound
channels.

• This configuration uses the local port (TCP/IP) or logical unit (LU6.2) to connect to
a specified mover (queue manager). It works almost exactly the way existing
channel configurations work, including using the local sync queue for the channel
-- but:

• Because the queue manager is part of a queue-sharing group, the channel can
put messages directly onto a shared queue. That is, the target application can be
on any of the queue managers in the QSG.

• The chart shows other ports/LUs not used by this configuration.

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic
port/LU

Shared
queues

Sync Q

Sync Q Sync Q

Inbound connection
to generic port/LU of
queue-sharing group

Target Q

Target Q Target Q

Target Q

Inbound channel configuration 2

N

O

T

E

S

Inbound channel configuration 2

• This configuration uses VTAM generic resources (LU6.2) or dynamic DNS
(TCP/IP) to connect to any mover in the queue-sharing group.

• The chart shows that the connection has "selected" the mover shown at top right,
but a subsequent connection could select another mover in the QSG.

• Notice that the mover uses the shared sync queue for this channel (because
access was through the shared LU or port). The shared sync queue is:
SYSTEM.QSG.CHANNEL.SYNCQ.

• If the channel loses its connection (for example, because this queue manager
fails), it can connect to a different mover. But this different mover can
resynchronize the channel using the shared sync queue.

• You can configure VTAM generic resources or dynamic DNS to use the z/OS
workload manager (WLM) to select the "least busy" mover -- providing load
balancing.

• If the target queue for a put is not shared then the same private queue must be
defined on each of the queue managers in the QSG.

Inbound connection to
shared port/LU of specific
queue manager's mover

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Private
queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic
port/LU

Shared
queues

Sync Q

Sync Q Sync Q

Target Q

Target Q

Inbound channel configuration 3

N

O

T

E

S

Inbound channel configuration 3

• This chart shows that you can connect directly to the shared port of a specified
mover -- that is, you do not have to use VTAM generic resources or dynamic
DNS.

• This allows you to use an "external" router to select which mover to connect to.

• By connecting to the shared port the connection uses the shared sync queue.
This allows correct resynchronization if the channel fails and reconnects to the
shared port of a different mover.

• A disadvantage of an external router is that it does not use the workload manager
to identify the "best" (least busy) mover.

Private
queues

QMGR

Mover

Private
queues

QMGR

Mover

Private
queues

QMGR

Mover

Shared
queues

Xmit Q
Sync Q

Xmit Q
Sync Q

Outbound connection
for private channel

Xmit Q
Sync Q

Outbound connection
for shared channel

Xmit Q
Sync Q

Outbound channel configurations

N

O

T

E

S

Outbound channel configurations

• This chart shows the two possible configurations for outbound channels.

• At the top is a private (or local) outbound channel. It works exactly the way
existing channel configurations work:

– Private transmission queue local to the mover

– Private synchronization queue local to the mover.

• Below is a shared outbound channel:
– Shared transmission queue -- any application in the QSG can use it

– Shared synchronization queue.

• A shared outbound channel can start on any mover -- WebSphere MQ selects the
"best" (least busy) mover.

• If a shared outbound channel fails (communication, mover, or queue manager
failure), the channel can restart automatically on another mover. This is called
peer channel recovery.

• Shared queue restrictions apply to shared transmission queues, for example:
– Maximum message length is 63KB if version is < V6

– CF capacity is limited (compared to DASD).

Client Channels

• Client channels are stateless, so don’t use synchronization
queues
– Only benefit of using a shared channel is the shared status

– Can cause performance issues if using shared channel
• Needs to update DB2 status for each connect/disconnect

• Can configure a generic port to point at INDISP(QMGR)
listener on each queue manager
– Can still benefit from failover and balancing of client connections without

using a shared channel, and can still use QSG name on the MQCONN

• Will not work for Extended Transactional Client (including
WAS 2-Phase Commit over client conn) until at V7.0.1

N

O

T

E

S

Client Channels

• As client channels are stateless, they don’t use a synchronization queue. The
only benefit of using a shared channel for client channels is the shared status
information. However, the use of a shared server-connection channel has
drawbacks as it means each connection/disconnect will cause the queue
manager to update the shared channel status, which is held in DB2. This could
lead to performance issues if there are lots of clients connecting.

• It is still possible to use a generic port to provide workload distribution and failover
in the QSG, but rather than targeting an INDISP(SHARED) listener on each
queue manager, the INDISP(QMGR) listener should targeted.

• When using client channels into a QSG it is not possible to use the Extended
Transactional Client (or client connections from WAS) if you are using 2-phase
commit, unless you are connecting into a V7.0.1 queue manager.

2-Phase Commit Client Connections

• When setting up the connection, specify the QSG name
rather than QMGR name
– In MQConnectionFactory if using JMS under WAS, you must ensure that

you are only using shared resources

– This causes units of work with a GROUP unit of recovery (UR) disposition
to be created, rather than QMGR

– A GROUP UR can be inquired and resolved via any member of the QSG
• If there is a failure, the transaction manager will reconnect to the QSG and

request a list of in-doubt transactions. GROUP URs will be reported back no
matter what QMGR they were started on

V7.0.1

N

O

T

E

S

2-Phase Commit Client Connections

• When using the Extended Transactional Client, or the JMS transactional client
(under WAS), it is possible to use 2-phase commit applications in a QSG. When
specifying the connection options to the Transaction Manager (TM) it is necessary
to provide the QSG name rather than the QMGR name, and also configure the
client channel to be routed to a suitable (V7.0.1 or higher qmgr) in the QSG.
When using this configuration, any Unit of Recovery (UR) that is created will have
a GROUP disposition. This means that it can be inquired and resolved on any
qmgr in the QSG.

• If a connection fails for some reason, and the TM reconnects to the QSG, it can
inquire and resolve the transactions no matter which qmgr it is now connected to,
and where the transactions were originally started.

V7.0.1

GROUPUR – The Problem (Pre V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App connects
via generic port and

starts UOW

If TM reconnects to
QM2 it only be told
what is in-doubt on

QM2, meaning that it
will throw away any

information about in-
doubts on QM1

If there is a failure,
TM will reconnect via

generic port to
inquire what

transactions need
resolving

V7.0.1

GROUPUR – The Solution (V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App connects
via generic port and

starts UOW

If TM reconnects to
QM2, QM2 will inquire
all the in-doubts that

have a GROUP
disposition, whatever

QMGR that were
running on.

If there is a failure,
TM will reconnect via

generic port to
inquire what

transactions need
resolving

xa_open string needs to be
specified with the QSG

name rather than QMGR
name, this means a

GROUPUR is created

Agenda

• What shared queues are
– Shared queues

– Queue-sharing groups

– Coupling Facility (CF) structures

– Persistence and transaction integrity

• Configuring channels with shared queues
– Inbound channel configurations

– Outbound channel configurations

• Exploiting shared queues
– Availability benefits of queue sharing

– Scalability

Unplanned
outages

Planned
outages

Unplanned
outages

Planned
outages

Full availability

Reduced capacity
(off-peak)

Reduced capacity

Outage

Do not do this

Availability – two servers

N

O

T

E

S

Availability – two servers

• This chart shows the availability impact of adding a second server.

• The chart assumes that the two servers use shared queues -- in-flight
transactions on a failing server are backed-out and can be processed by the other
server (the client does not see the outage).

• For many installations, unplanned outages are much less frequent than planned
outages. WebSphere MQ Shared Queue Support allows one queue manager to
take a planned outage without interrupting other queue managers in the QSG.
This includes (for example) outages for software upgrades such as new versions
and releases of the queue manager.

• Chart is only applicable for "normal" unplanned outages (such as caused by
software errors or operator errors). It is not applicable for disasters (such as
meteorite impacts).

• Adding more servers gives even better availability -- in particular the failure of one
server has less relative impact on the overall capacity.

Shared queue scaling – non persistent

N

O

T

E

S

Shared queue scaling – non persistent

• Chart shows measured results on lab setup -- actual numbers of messages
processed will vary depending on the equipment and configuration used.

• Lab setup does not include business logic.

• All messages are nonpersistent.

• In all cases one queue manager per z/OS image.

• Notice that:
– Even for single queue manager case shared queue outperforms local queue (for this test case).

– Scaling is near-linear for additional queue mangers.

Shared queue scaling – persistent

• 11,000+ persistent messages/sec using 4 qmgrs

• log DASD still likely to be first limit on throughput

N

O

T

E

S

Shared queue scaling – persistent

• Chart shows measured results on lab setup -- actual numbers of messages
processed will vary depending on the equipment and configuration used.

• Lab setup does not include business logic.

• All messages are persistent.

• In all cases one queue manager per z/OS image.

• DASD configuration enforced single logs and no archiving.

N

O

T

E

S

CF Link types / z/OS XCF heuristics

• Throughput and CPU cost depend on load

• CFP slowest, most expensive - up to 27 Km

• CBP 'ClusterBus' - 10 metres

• ICP only to CF LPAR'd within same box

• CBP performs more like ICP than CFP? (did on 9672 anyway)

• CF calls can be synchronous or async according to z/OS heuristics

• Async likely to mean order of 130+ microsec wait

• Sync means z/OS CPU is busy while call data sent, CF processes, return data
received

– typically 50+ microsecs

• Technology trends - CPU speed increasing faster than link speed

Shared queue benefits

• No mover between servers in the QSG.

• Pull load-balancing for servers.

• Availability from multiple servers.

• Workload-balancing for movers.

• Availability from shared channels.

• Simplified configuration management from shared object
definitions and command scoping.

• Flexible capacity management.

N

O

T

E

S

Shared queue benefits

• This chart summarizes benefits from using shared queues . Mostly these are
things we have discussed in this presentation.

• Using shared queues for communication within the Sysplex is faster and simpler
than using the mover.

• Multiple servers get better performance from sharing the same request queue
(pull load balancing) than from separate queues.

• Multiple servers provide better availability than single servers.

• Shared channels provide better availability than private channels (peer channel
recovery and so on).

• Configuration management is simplified by sharing the same object definitions
across many queue managers and by commands which act on more than one
queue manager (command scoping, see MQSC Command Reference).

• Capacity can be increased (or decreased) nondisruptively by adding or upgrading
processors, disks, or whatever.

More Information

• WebSphere MQ for z/OS Concepts and Planning Guide

• SupportPacs MP16, MP1E
– www.ibm.com/software/integration/support/supportpacs/

• RedPaper 3636 – WebSphere MQ Queue Sharing Group in
a Parallel Sysplex environment
– www.redbooks.ibm.com/redpieces/pdfs/redp3636.pdf

